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Abstract
This paper is concerned with the numerical simulation of the defect density
influence on the steady state response of a silicon-based p–i–n cell under reverse
bias dark conditions. To show this effect, the numerical simulation is performed
on a crystalline cell containing a single discrete level of defects in the energy
gap and in which the density of defects is varied. Afterwards, we extend our
model to a typical amorphous silicon cell by including band tails and dangling
bonds. The density of dangling bonds is calculated according to the defect
pool model. For both cases, a detailed description of the physical model and
its mathematical formulation is presented. By analysing the different variables
which describe the electrical behaviour of the cell in the steady state such as
the free carrier distributions, the carrier lifetimes and the quasi-Fermi levels,
we show how the density of defects changes the semiconductor regime from
lifetime to relaxation.

1. Introduction

The numerical simulation of semiconductor devices has been considered as an essential tool
used to explain the electronic processes of the material and devices. This field of research has
continued to develop and has become of interest both from the point of view of improving
existing devices and the development of new ones. The electrical and optical properties of
a semiconductor are limited by the density of defects in the bandgap (number of defects per
unit volume per unit energy). These defects, which are represented by discrete levels in the
energy gap of a crystalline semiconductor or by a continuous distribution including band tails
and dangling bonds in the gap of an amorphous semiconductor, act as traps and recombination
centres for excess carriers and are therefore an important parameter.
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In the non-equilibrium steady state, an excess of electron (or hole) density is characterized
by two time constants. (a) Due to their mobility, the excess carriers move away into regions of
lower density. The time constant for this process is the dielectric relaxation time τdiel, defined
by the relation

τdiel = εε0

σ0
(1)

where σ0 is the equilibrium conductivity, ε0 = 8.85 × 10−14 F cm−1 the permittivity of free
space and ε the dielectric constant. (b) The other process is recombination with carriers of
the other type, characterized by the carrier lifetimes τn,p of electrons or holes. This process
tends to establish local thermal equilibrium. van Roosbroeck [1] introduced the distinction
between ‘lifetime semiconductors’ characterized by carrier lifetimes exceeding the dielectric
relaxation time

τn,p > τdiel (2)

and ‘relaxation semiconductors’, where there is a high recombination rate of electron–hole
pairs leading to a short carrier lifetime:

τn,p < τdiel. (3)

A more exact definition can be given for the relaxation regime [2, 3]: whenever an external
field is applied, there will always be a splitting of the Fermi level Ef into quasi-Fermi levels
Efn and Efp for electrons and holes respectively. The magnitude of this splitting depends on
the ratio τdiel/τn,p and on the electric field. If τdiel/τn,p is very small, this splitting will be rather
large even for small fields. If, however, τdiel/τn,p is large, which is the relaxation case, the
splitting is much smaller for the same field. This means that the deviations from local thermal
equilibrium are negligible in the relaxation regime. As a consequence, we have

n(x)p(x) � n2
i (4)

and

Efn(x) � Efp(x) � Ef(x) (5)

where x is the space coordinate (cm), n(x) and p(x) are the free electron and hole densities
(cm−3) at the position x and ni is the intrinsic carrier density (cm−3).

The aim of our work is to present a numerical simulation of the defect density effect on
the electrical behaviour of a silicon p–i–n cell. We assume the dark reverse bias conditions of
the steady state. We start by simulating the electrical behaviour of a crystalline cell having a
single level of defects Er and in which the density of defects Nr (cm−3) is varied. Afterwards,
our model is extended to a typical amorphous silicon cell by including band tail and dangling
bond states.

Figure 1 shows (a) the schematic diagram of the considered p–i–n cell and (b), (c) the band
diagram at thermal equilibrium for, respectively, the crystalline silicon cell and the a-Si:H one.
The profile of the doping proposed in the simulation is that of an abrupt p–i–n junction.

2. Phenomenological transport equations

2.1. Crystalline silicon cell

The basic semiconductor equations forming the mathematical model, and which describe the
electric transport properties within the semiconductor, are [4, 5] the Poisson equation and
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Figure 1. (a) Schematic diagram of the silicon p–i–n cell. (b), (c) Band diagram and Fermi-level
profile at the thermal equilibrium of, respectively, the crystalline model with Nr = 1016 cm−3 and
the amorphous model.

the continuity and current-density equations. In the steady state and treating the cell as a
one-dimensional device, the equations can be expressed as

d2ψ

dx2
= − q

εε0
(p − n + pr − nr + �) (6)

1

q

d Jn

dx
− Ur = 0 (7)

1

q

d Jp

dx
+ Ur = 0 (8)

Jn = −qµnn
dψ

dx
+ q Dn

dn

dx
(9)

Jp = −qµp p
dψ

dx
− q Dp

d p

dx
(10)

where ψ is the electric potential (V), n and p are the free electron and hole densities and
nr and pr are the trapped electron and hole densities in the discrete level Er. Jn and Jp are
the electron and hole current densities (A cm−2), Ur is the recombination rate of electrons
and holes (cm−3 s−1) at the discrete level Er, � is the doping charge density (cm−3) and q
is the elementary electric charge (C). µn and µp are the electron and hole band mobilities
(cm2 V−1 s−1) and Dn and Dp are the electron and hole diffusion coefficients (cm2 s−1).

The trapped electron and hole densities nr and pr in equation (6) are, respectively, given
by

nr = Nr fr and pr = Nr (1 − fr) (11)
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where Nr is the density of defects (cm−3) at the level Er and fr is the occupation function
at this level given by appendix A, in both the thermal equilibrium (equation (A.1)) and the
non-equilibrium steady state (equation (A.2)).

Further, the source term Ur appearing in equations (7) and (8), which represents the
recombination rate for the Shockley–Read mechanism, is given by [6]

Ur = np − n2
i

τp,r
(
n + n1,r

)
+ τn,r

(
p + p1,r

) (12)

where ni is the intrinsic carrier density and n1,r and p1,r are, respectively, the effective electron
and hole emission densities for the state Er. Their expressions are given in appendix A
(equation (A.3)). The characteristic times τn,r and τp,r are the carrier lifetimes for electrons
and holes:

τn,r = 1

Cn,r Nr
, τp,r = 1

Cp,r Nr
(13)

where Cn,r and Cp,r are the electron and hole capture coefficients (cm3 s−1) for the state Er.

2.2. Amorphous silicon cell

We now extend the previous model to the case of a typical amorphous silicon cell. This later
is characterized by both band tails and dangling bonds.

The band tails result from the disorder in the atomic structure and so the absence of long
range order. Therefore, we adopt the simplified exponential band tail model [7, 8], in which
the conduction and valence band tail density of states (cm−3 eV−1), as a function of the energy
level E , can be expressed as

gc(E) = Gc exp

(
− Ec − E

kBTc

)
(14)

gv(E) = Gv exp

(
− E − Ev

kBTv

)
(15)

where kB is the Boltzmann constant, Ec and Ev are conduction and valence band edge energies,
Gc and Gv are the densities of states (cm−3 eV−1) in Ec and Ev respectively and Tc and Tv are
the characteristic absolute temperatures of the conduction and valence band tail respectively.

Besides the tail states, there are other defect states localized inside the gap which result
from the presence of the dangling bonds, i.e., unsaturated broken bonds. The dangling bond
states are characterized by three different charge states: D+, D0 and D−, corresponding to a
dangling bond occupied by zero, one and two electrons, respectively, and given by

D+(E) = D(E) f +(E), D−(E) = D(E) f −(E) D0(E) = D(E) f 0(E) (16)

where f +(E), f −(E) and f 0(E) are the occupation functions in each charge state, for which
expressions are given in appendix B and D(E) is the dangling bond density (cm−3 eV−1).

To calculate the density of dangling bonds, we have used the defect pool model [9–11].
According to the last version of this model developed by Powell and Deane [11], the energy
variation of the dangling bond density D(E) has the following expression:

D(E) = γ

[
2

f 0(E)

]kB T ∗/2Evo

P

(
E +

σ 2

2Evo

)
(17)

where γ is a multiplying factor, P(E) is the Gaussian distribution of the defect pool model, σ
is the width of the defect pool, T ∗ is the equilibrium temperature (freeze-in temperature) for
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which the density of states is maintained and Evo = kBTv. Note that the detailed expressions
of γ and P(E) are given in appendix C.

Thereafter, with the inclusion of band tail states and dangling bond states, the electronic
transport become more complicated in the case of amorphous silicon. Indeed, the Poisson
equation (equation (6) for crystalline silicon) includes, now, the trapped charge density in both
band tail states and dangling bond states:

d2ψ

dx2
= − q

εε0
(p − n + pt − nt + N+

db − N−
db + �). (18)

In equation (18), the trapped electron and hole densities in the band tail states, nt and pt

respectively, are related to the densities of states of the conduction gc(E) and valence gv(E)
band tails (given by equations (14) and (15)), as

nt =
∫ Ec

Ev

gc(E) fnc(E) dE (19)

pt =
∫ Ec

Ev

gv(E) fpv(E) dE (20)

where fnc(E) and fpv(E) are, respectively, the occupation functions of electrons and holes
in conduction and valence band tails given in appendix D for both thermal equilibrium
(equations (D.1)) and non-equilibrium steady state (equations (D.2)).

Furthermore, the additional terms N−
db and N+

db in equation (18) are the trapped electron
and hole densities in the dangling bond states and are related, as in band tail states, to their
respective occupation functions and density of dangling bonds as

N−
db =

∫ Ec

Ev

D−(E) dE (21)

N+
db =

∫ Ec

Ev

D+(E) dE (22)

where D−(E) and D+(E) are the densities of charged states given by equation (16).
By including both band tail states and dangling bond states, the recombination rate Ur in

equations (7) and (8) is replaced, in the case of amorphous silicon, by the total recombination
rate, Utot, which is the sum of the recombination rate Ut through band tail states and the
recombination rate Udb through the dangling bond states.

The recombination rate Ut via band tail states is given by the following expression:

Ut =
∫ Ec

Ev

(
np − n2

i

) {[
CncCpcgc(E)

Cnc(n + n1) + Cpc(p + p1)

]
+

[
CnvCpvgv(E)

Cnv(n + n1) + Cpv(p + p1)

]}
dE

(23)

where Cnc, Cpc, Cnv and Cpv are the capture coefficients of electrons and holes by conduction
and valence band tails respectively. n1 and p1 are, respectively, the effective electron and hole
emission density for the state E .

The recombination rate Udb, through the dangling bond states, is the sum of the
recombination rate U +

db via the D+ states and U 0
db via the D0 states if we treat electrons,

or the sum of the recombination rate U−
db via the D− states and U 0

db via the D0 states if we treat
holes. Thus, we have

Udb = (
U +

db + U 0
db

)
electrons = (

U−
db + U 0

db

)
holes

=
∫ Ec

Ev

(
np − n2

i

){[
P−C+

n C0
p + N+C0

n C−
p

N+ P− + P0 P− + N+ N0

]
D(E)

}
dE (24)
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Table 1. Electrical parameters of the crystalline silicon cell.

Fixed parameters

kBT/q = 25.87 V Eg = 1.12 eV
εε0 = 1.0625 × 10−12 F cm−1 ni = 1010 cm−3

T = 300 K Ec − Er = 0.56 eV
µn = 1350 cm2 V−1 s−1 n1,r = p1,r = 1010 cm−3

µp = 480 cm2 V−1 s−1 Cn,r = Cp,r = 10−8 cm3 s−1

Dn,p = µn,pkBT /q

Variable parameters

Nr = 1012, 1014, 1015, and 1016 cm−3

Table 2. Electrical parameters of the a-Si:H cell.

εε0 = 1.0536 × 10−12 F cm−1 Eg = 1.9 eV
T = 300 K Gc = Gv = 2 × 1021 cm−3 eV−1

µn = 10 cm2 V−1 s−1 T = 300 K
µp = 1 cm2 V−1 s−1 Tc = 250 K
Dn,p = µn,pkBT /q Tv = 550 K
H = 5 × 1021 cm−3 Cnc = Cpv = 10−8 cm3 s−1

NSiSi = 2 × 1023 cm−3 Cnv = Cpc = 10−10 cm3 s−1

Ep = 1.27 eV C+
n = C−

p = 10−7 cm3 s−1

σ = 0.178 eV C0
n = C0

p = 10−8 cm3 s−1

T ∗ = 500 K U = 0.2 eV

where

P0 = n+
1C+

n + pC0
p (25a)

P− = n0
1C0

n + pC−
p (25b)

N0 = nC0
n + p−

1 C−
p (25c)

N+ = nC+
n + p0

1C0
p . (25d)

In the expressions above, C+
n , C0

n , C0
p and C−

p are electron and hole capture coefficients by
D+, D0 and D−, respectively. The terms n0

1 and n+
1 indicate, respectively, the emission of an

electron to the conduction band from the D− defect state and the D0 defect state [12],

n0
1(E) = 2Nc exp

(
− Ec − E − U

kBT

)
and n+

1(E) = 0.5Nc exp

(
− Ec − E

kBT

)
(26)

while the terms p0
1 and p−

1 indicate, respectively, the emission of a hole to the valence band
from the D+ defect state and the D0 defect state [12]:

p0
1(E) = 2Nv exp

(
− E − Ev

kBT

)
and p−

1 (E) = 0.5Nv exp

(
− E + U − Ev

kBT

)
. (27)

U is the energy difference between the two-electron D− energy state and the one-electron D0

energy state.

3. Semiconductor parameters

Tables 1 and 2 give the electrical parameters used in the simulation of the crystalline and
the amorphous silicon cell respectively. Values of the dangling bond density parameters are
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Figure 2. Spatial and energetic variation of the
dangling bond density calculated by the defect pool
model.

typical values found in the literature [11]. For both cases, the total device thickness d is
equal to 3.5 µm; the p- and n-layer thicknesses are equal to 0.01 µm with doping densities
Na = 5 × 1017 cm−3 and Nd = 8 × 1017 cm−3 respectively.

Because the band diagram of the cell vary with space, there will be a spatial variation
of the Fermi-level position within the energy ‘gap’. According to the defect pool model, the
dangling bond density is related to the Fermi-level position; then, there will be, in addition
to the energetic variation, a spatial variation of the dangling bond density. Figure 2 shows
the spatial and energetic variation of the dangling bond density calculated by the defect pool
model with the parameters listed in table 2. At the p side of the cell, most of the dangling
bonds are in the D+ states. In the intrinsic layer, the Fermi level is almost in the middle of
the energy ‘gap’, so the defect density distribution is symmetric about the D0 peak. Going
towards the n side, the dangling bonds become, more and more, in the D− states.

4. Boundary conditions

For both crystalline and amorphous cells, boundary conditions for free carrier densities (n, p)
are those of the thermal equilibrium in the p and n layers. Concerning the electric potential, the
values at the boundaries x = 0 and d are, respectively, equal to the externally applied voltage
Va and the junction built-in potential Vi: ψ(0) = Va and ψ(d) = Vi.

5. Numerical method of resolution

The system defined by the basic semiconductor equations, for both crystalline and amorphous
cells, cannot be solved analytically. The problem must be approached numerically. When
solving the semiconductor equations, the potential ψ and the free carrier densities n and p
are used as the independent variables. But before the numerical resolution, it is necessary to
discretize the device into a number of slices. We have chosen a non-uniform slice distribution
to show, more clearly, the variation of the different variables at the p/i and i/n interfaces. The
number of spatial slices, L, is taken equal to 150. For the a-Si:H cell, the energy ‘gap’, in
each slice, is also discretized into a number N of energy slices; N is taken equal to 50. After
the discretization, the differential operators in the equations are replaced at each of the mesh
points by finite difference equations where only the nearest neighbouring points are taken into
account. The obtained system is a set of 3 × L non-linear algebraic equations with 3 × L
unknowns (n, p and ψ in each slice). Generally, iterative methods are used to solve systems
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Figure 3. Electric field distribution under 0 and −1 V bias in (a) the crystalline silicon cell for two
densities of defects Nr = 1014 and 1015 cm−3, (b) field profile in the a-Si:H cell.

of non-linear algebraic equations. The method that we have used is the iterative method of
Newton [4, 5]; this one is a fully coupled method which consists of solving simultaneously the
set of 3 × L equations.

6. Results

Figure 3 shows the electric field distribution in the crystalline cell (case (a)) and the amorphous
one (case (b)) under 0 and −1 V reverse bias voltage in the dark. For the crystalline cell, the
field is plotted for two values of the defect density: 1014 and 1015 cm−3. The two cases of
the figure show an increase of the field from the boundaries (x = 0 and d) towards the p/i
and i/n interfaces, followed by a decrease from the two interfaces towards the middle part of
the device. The effect of defects is clearest at the thermal equilibrium. We can see that the
increase of the defect density (from 1014 cm−3 to the a-Si:H density) leads to a more important
decrease with an exponential decay towards the middle of the device. Under a reverse applied
voltage, the depletion regions, for the two cases ((a) and (b)), are extended from both sides of
the device (p and n) towards the central part until they overlap and the field increases mainly
in the intrinsic layer. At the p/i and i/n interfaces, no supplementary increase is remarked for
the field because the carriers here are already depleted.

Figure 4 shows the free electron and hole distributions under 0 and −1 V reverse bias
voltage, always in the dark. Cases (a)–(d) correspond, respectively, to a defect density of 1012,
1014, 1015 and 1016 cm−3 in the crystalline cell. Case (e) corresponds to the a-Si:H cell. By
comparing the carrier distributions under the reverse bias to those of the thermal equilibrium
for each case, we remark that the −1 V voltage causes a considerable depletion of the free
carriers only for Nr = 1012 and 1014 cm−3 (cases (a) and (b)). A higher density of defects
reduces the effect of the applied voltage and there is no significant deviation from the thermal
equilibrium. For Nr = 1016 cm−3 (case (d)), the free carrier densities under the reverse bias
are almost superposed on those of the thermal equilibrium. For the a-Si:H cell, it is shown
that the slight decrease of the electron density under the reverse bias (relatively to the thermal
equilibrium density) is opposed by a slight increase of the hole density to maintain the thermal
equilibrium condition np = n2

i .
To show this effect more clearly, we have plotted in figure 5 the n(x)p(x) product

profile under −1 V reverse voltage for each case of figure 4. As shown, the increase of
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Figure 4. Free electron and hole distributions under 0 and −1 V bias in the crystalline silicon cell
for different densities of defects, (a) Nr = 1012 cm−3, (b) Nr = 1014 cm−3, (c) Nr = 1015 cm−3

and (d) Nr = 1016 cm−3. (e) Free electron and hole distributions in the a-Si:H cell.

the defect density reduces the effect of the applied voltage remarkably and the known relation
np = n2

i exp(eVa/kBT ) is no longer verified. For the crystalline case with Nr = 1016 cm−3

or the amorphous case, there is almost no deviation from the thermal equilibrium; we have
n(x)p(x) � n2

i for all x . Even if we increase the reverse voltage to −5 or −10 V as shown
in figure 6 for the two last cases, the deviation from thermal equilibrium remains very slight
relative to the values of the applied voltage.
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Figure 5. n(x)p(x) product profile under −1 V bias in
the crystalline silicon cell for different densities of defects
and in the a-Si:H cell.

Figure 6. n(x)p(x) product profile under 0, −5 and −10 V in (a) the crystalline silicon cell for
Nr = 1016 cm−3 and (b) the a-Si:H cell.

This condition which has appeared with increasing defect density defines the relaxation
regime of the semiconductor. This regime, as we mentioned in the introduction, is reached
when the relaxation time is greater than the carrier lifetimes (relation (3)). Then, the increase
of the defect density has changed the regime of the semiconductor from the lifetime regime
to the relaxation one. We can verify this by comparing the relaxation time with the carrier
lifetimes for different densities of defects. Figure 7 shows the distribution of the relaxation
time τdiel(x) and the carrier lifetimes τn(x) and τp(x) through the device. For the crystalline
cell, the curves are plotted for Nr = 1014, 1015 and 1016 cm−3. τdiel(x) is calculated according
to the relation

τdiel(x) = εε0

σ0(x)
= εε0

e
(
µnn0(x) + µp p0(x)

) (28)

where n0(x) and p0(x) are the free electron and hole distributions at the thermal equilibrium.
For the crystalline cell, the density of defects is taken equal to the same value along the

whole structure; then τn(x) and τp(x)will have a fixed value. By assuming the same coefficient
of capture for the electrons and holes (see table 1) we have

τn(x) = τp(x) = 1

Cn,r Nr
. (29)

For the amorphous silicon cell, the carrier lifetimes are limited by recombination of carriers
via the dangling bond states, the electrons in the D+ states and the holes in the D− states. As
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Figure 7. Relaxation time and carrier lifetime profiles in the crystalline silicon cell for (a) Nr =
1014 cm−3, (b) Nr = 1015 cm−3 and (c) Nr = 1016 cm−3. (d) Relaxation time and carrier lifetime
profiles in the a-Si:H cell.

these states and also their occupation functions have a spatial and energetic distribution, then
the carrier lifetimes will have a spatial distribution. If D(E, x) is the density of dangling bonds
at the level E and in the position x , with f +(E, x) and f −(E, x) its occupation functions, then
we have

τn(x) =
(∫ Ec

Ev

C+
n D(E, x) f +(E, x) dE

)−1

(30)

τp(x) =
(∫ Ec

Ev

C−
p D(E, x) f −(E, x) dE

)−1

. (31)

According to figure 7, the condition of the relaxation regime is well verified on a big part of
the crystalline cell for Nr = 1015 and 1016 cm−3, and also for the amorphous silicon cell in,
which the relaxation time is greater than the carrier lifetimes by many orders of magnitude.

We can also show the transition from the lifetime regime to the relaxation one by tracing
the quasi-Fermi levels under reverse bias as shown in figure 8. According to this figure, the
splitting of the Fermi level Ef(x) into quasi-Fermi levels Efn(x) (for electrons) and Efp(x) (for
holes) under −1 V reverse voltage becomes smaller and smaller throughout the device with
increasing defect density. For the two last cases ((c) and (d)), we can see that the quasi-Fermi
levels are well superposed along the whole structure which means that the deviations from
local thermal equilibrium are negligible.
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Figure 8. Bandgap and quasi-Fermi level distribution under −1 V bias in the crystalline silicon
cell for (a) Nr = 1012 cm−3, (b) Nr = 1015 cm−3 and (c) Nr = 1016 cm−3. (d) Bandgap and
quasi-Fermi level distribution in the a-Si:H cell.

7. Conclusion

We have presented a numerical simulation of the defect density effect on the steady state
electrical behaviour of a silicon-based p–i–n cell under reverse bias dark conditions. The
simulation was performed on a crystalline cell having a single discrete level of defects in the
energy gap and in which the density of defects is varied. Afterwards, the discrete level was
replaced by a continuous distribution along the gap including band tail and dangling bond states
to represent a typical amorphous silicon cell. The density of dangling bonds was calculated
by the defect pool model. For both cases, a detailed description of the physical model and its
mathematical formulation was presented. We have analysed, from the crystalline to the a-Si:H
cell, the different variables which describe the electrical behaviour of the cell in the steady
state such as the electric field profiles, the free carrier distributions, the carrier lifetimes and
the quasi-Fermi levels. We have, thus, shown how the density of defects leads to a change of
the semiconductor regime from a lifetime semiconductor to a relaxation one.

Appendix A

For the crystalline silicon, the occupation function fr , in the thermal equilibrium at the discrete
level Er, is simply that of Fermi and Dirac [5, 13]:

fr = 1

1 + exp
(

Er−Ef
kB T

) (A.1)



Steady state response of a silicon-based p–i–n cell 2015

where kB is the Boltzmann constant, T is the absolute temperature and Ef is the Fermi level
at thermal equilibrium.

In the non-equilibrium steady state, the occupation function at the level Er is one calculated
by the statistic of Taylor and Simmons applied to the Shockley–Read–Hall model [6] and is
given by

fr = Cn,rn + Cp,r p1,r

Cn,rn + Cp,r p + Cn,rn1,r + Cp,r p1,r
(A.2)

where Cn,r and Cp,r are the electron and hole capture coefficients (cm3 s−1) for the state Er,
and

n1,r = ni exp

(
Er − Efi

kBT

)
and p1,r = ni exp

(
− Er − Efi

kBT

)
(A.3)

in which ni is the intrinsic carrier density and Efi is the intrinsic Fermi level. In our case, we
have taken Er = Efi, and then n1,r = p1,r = ni.

Appendix B

The occupation functions f +, f 0 and f − of the dangling bond in each charge state, i.e.,
occupied, respectively, by zero, one and two electrons, are calculated at the thermal equilibrium
from statistical mechanics [14] and are given by

f +(E) = 1

1 + 2 exp([Ef − E]/kBT ) + exp([2Ef − 2E − U ]/kBT )
(B.1a)

f 0(E) = 2 exp([Ef − E]/kBT )

1 + 2 exp([Ef − E]/kBT ) + exp([2Ef − 2E − U ]/kBT )
(B.1b)

f −(E) = exp([2Ef − 2E − U ]/kBT )

1 + 2 exp([Ef − E]/kBT ) + exp([2Ef − 2E − U ]/kBT )
(B.1c)

where U is the correlation energy which is the energy difference between the two-electron D−
energy state and the one-electron D0 energy state.

In the non-equilibrium steady state, the occupation functions for each charge state, D+,
D− and D0, are expressed as [15]

f +(E) = P0 P−

N+ P− + P0 P− + N0 N+
(B.2a)

f −(E) = N0 N+

N+ P− + P0 P− + N0 N+
(B.2b)

f 0(E) = N+ P−

N+ P− + P0 P− + N0 N+
. (B.2c)

The expressions of P0, P−, N0 and N+ are given in section 2.2 (equations (25)).

Appendix C

In equation (17), the multiplying factor γ and the Gaussian distribution of the defect pool
model P(E) are given by [11]

γ =
[

Gv2E2
vo

[2Evo − kBT ∗]

][
H

NSiSi

]kB T ∗/4Evo

exp

[ −1

2Evo

[
Ep − Ev − σ 2

4Evo

]]
(C.1)

P(E) =
(

1/σ
√

2π
)

exp

[
− (E − Ep)

2

2σ 2

]
(C.2)
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where Ep is the most probable energy, Ev is the valence band edge energy and H and NSiSi are,
respectively, the total density (cm−3) of hydrogen and the number of electrons in the silicon
bonding states.

Appendix D

In thermal equilibrium, the occupation function of electrons fnc(E) in the conduction band
tail is the Fermi–Dirac function:

fnc(E) = 1

1 + exp
(

E−Ef
kBT

) . (D.1a)

Likewise, for holes in the valence band tail, we have

fpv(E) = 1

1 + exp
(

Ef−E
kB T

) . (D.1b)

In the non-equilibrium steady state, the occupation functions of electrons and holes in
conduction and valence band tails were determined using the Taylor–Simmons statistics and
are shown to be given by [6]

fnc(E) = Cncn + Cpc p1

Cncn + Cpc p + Cncn1 + Cpc p1
(D.2a)

fpv(E) = Cpv p + Cnvn1

Cpv p + Cnvn + Cpv p1 + Cnvn1
(D.2b)

where

n1(E) = ni exp

(
E − Efi

kBT

)
and p1(E) = ni exp

(
− E − Efi

kBT

)
. (D.3)
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